Posts Tagged ‘SNR’
But I’ve got an ‘Excellent Signal’!!?
Ever so often I find myself troubleshooting some type of wireless related issue, and while wireless issue’s vary from
- Slow performance
- Clients can’t connect
- Poor voice performance
- Or even random disconnects, the list is endless.
However one of the common things I hear during the troubleshooting process is without a doubt along the lines of:
“But it says I have an excellent signal with five bars!”
And…. my favorite question in response to that statement is:
“What is your data rate?” (usually with this same expression)
Signal strength is only a small piece to the puzzle what determining whether or not you have a good quality signal strength. The signal strength indicator itself could even be misleading, just because a client is registering ‘5 bars’ with a good RSSI and SNR does not necessarily mean the AP on the other end of the connection is seeing a similar RSSI & SNR to the WLAN Client. Do I hear a transmit power mismatch, or a highly reflected RF environment?
Nowadays WLAN clients comes in all shapes and sizes (Phones, Tablets, wireless scanners, VoIP handsets) long gone are the days of wireless is just for laptops. With this wide array of hardware clients, you can guarantee each of these devices have a wireless transmitter with different specifications, and while it is impossible to take into account every WLAN client, the client audience should be considered when designing a WLAN or deploying AP’s.
Consider the an access point is transmitting at it’s max power rating, you can guarantee the wireless phone or VoIP handset does not have that same power level. It’s like two people trying to communicate with each other that across a football field and only one person has a mega-phone. The other guy without the megaphone will need to probably repeat himself a few times for the other person to understand him (Think of that as Data Retries).
One of the better ways to identify a proper Wireless connection would be to verify the the data rate, and see review the data rate statistics. Many of the different WLAN Client software have this functionality, telling us what percentage of the data was transmitted/received at a specific data rate. Now shifting data rates is common in a WLAN, but seeing 90% of data operating at the 1, 2, or 5.5 Mbps data rate is just poor performance.
A while back I posted about Understanding a wireless connection, and I wanted to dive a bit deeper and expand on the concept (albeit years later, but hey better late then never right?)
Understanding a Wi-Fi connection.
Just some more details on how drastically different wireless networks differ from the traditional wired network is understanding the client connection. Surely we all understand how the wired connection works, we plug in a cable two of the four pairs carry data then speed and duplex setting are auto-negotatiated. However when you look at a wireless client you see an antenna, signal strength, data rate, RSSI, power level, and SNR values definitely a little more to think about.
I’ll start with RSSI, which is the Received Signal Strength Indicator this value is typically shown as a negative dBm value (dB and watt values are a topic for another post). RSSI is the measurement of power in an RF signal, the more power in an RF signal the better the connection quality is. So the closer this value is to 0 the stronger the signal is. So a value of -61 is stronger then a value of -74. Now different vendors do have different scales some vendors will have a max value of -100 while others go higher or lower, of course signals that weak should be avoided (and probably won’t work anyway). So it’s best to get some documentation from the vendor of your client WLAN cards to see the RSSI value range. The value of the RSSI will also play a role in the connection speed, and once again vendor documentation will provide the RSSI value to link speed ratio (and do keep in mind many other factors play a role in the connection speed as well).
SNR is the Signal to Noise ratio, this is how much stronger the wireless signal is compared to the noise floor surrounding the WLAN client. This is shown in a positive dB value. Too much RF noise around the WLAN client will cause collisions resulting in frames being retransmitted thus lowering the throughput of the connection. Try connecting a cordless phone that works in the 2.4 GHz range right next to a b/g access point, the phone can generate enough RF noise to cancel out the wireless signal completely. It’s typically best practice to have the SNR value 20 to 25 dB’s away from the RSSI value. So to go back to our previous example if our RSSI is -61 we would want our SNR value to be around -86, or if our RSSI is -74 we would want the SNR to be -99.
The data rate can be one of many values depending on which wireless standard you are connecting with. Be aware though that wireless is a shared medium so it’s half duplex it can not transmit and receive at the same time. So your actual throughput will be about half of what your client is connecting at. A WLAN device showing a connection of 54 Mbps will really have throughput of maybe 30 Mbps. Throughput can be tested using nice little utility called iperf which is available on both Windows and Linux platforms for free.
The power level is measured in mW and depicts how much power a WLAN device is using to maintain the connection. Its typically best practice to design your WLAN infrastructure so your devices operate at half their max output power. This way if an AP goes down neighboring AP’s can double their output power and maintain the availability of the WLAN.
So the overall signal strength/quality registered by client will be a mixture of all those variables.
Below is a screen shot from the Cisco Aironet Site Survey Utility
Here you will see the RSSI at -50 dBm and noise level of -96 dBm, resulting in an SNR value of 46 dB. This utility will also provide you with the BSSID (MAC Address) of the AP you are connecting to along with the RF Channel, 64 in this case utilizing 802.11a.